Information

3.16: Phylogenetic Trees - Biology

3.16: Phylogenetic Trees - Biology


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

In scientific terms, the evolutionary history and relationship of an organism or group of organisms is called phylogeny. Phylogeny describes the relationships of one organism to others—such as which organisms it is thought to have evolved from, which species it is most closely related to, and so forth. Phylogenetic relationships provide information on shared ancestry but not necessarily on how organisms are similar or different.

Scientists use a tool called a phylogenetic tree to show the evolutionary pathways and connections among organisms. A phylogenetic tree is a diagram used to reflect evolutionary relationships among organisms or groups of organisms. Scientists consider phylogenetic trees to be a hypothesis of the evolutionary past since one cannot go back to confirm the proposed relationships. In other words, a “tree of life” can be constructed to illustrate when different organisms evolved and to show the relationships among different organisms (Figure 1).

A phylogenetic tree can be read like a map of evolutionary history. Many phylogenetic trees have a single lineage at the base representing a common ancestor. Scientists call such trees rooted, which means there is a single ancestral lineage (typically drawn from the bottom or left) to which all organisms represented in the diagram relate. Notice in the rooted phylogenetic tree that the three domains—Bacteria, Archaea, and Eukarya—diverge from a single point and branch off. The small branch that plants and animals (including humans) occupy in this diagram shows how recent and minuscule these groups are compared with other organisms. Unrooted trees don’t show a common ancestor but do show relationships among species.

Carl Woese and the Phylogenetic Tree

In the past, biologists grouped living organisms into five kingdoms: animals, plants, fungi, protists, and bacteria. The organizational scheme was based mainly on physical features, as opposed to physiology, biochemistry, or molecular biology, all of which are used by modern systematics. The pioneering work of American microbiologist Carl Woese in the early 1970s has shown, however, that life on Earth has evolved along three lineages, now called domains—Bacteria, Archaea, and Eukarya. The first two are prokaryotic groups of microbes that lack membrane-enclosed nuclei and organelles. The third domain contains the eukaryotes and includes unicellular microorganisms together with the four original kingdoms (excluding bacteria). Woese defined Archaea as a new domain, and this resulted in a new taxonomic tree (Figure 1a). Many organisms belonging to the Archaea domain live under extreme conditions and are called extremophiles. To construct his tree, Woese used genetic relationships rather than similarities based on morphology (shape).

Woese’s tree was constructed from comparative sequencing of the genes that are universally distributed, present in every organism, and conserved (meaning that these genes have remained essentially unchanged throughout evolution). Woese’s approach was revolutionary because comparisons of physical features are insufficient to differentiate between the prokaryotes that appear fairly similar in spite of their tremendous biochemical diversity and genetic variability (Figure 2). The comparison of homologous DNA and RNA sequences provided Woese with a sensitive device that revealed the extensive variability of prokaryotes, and which justified the separation of the prokaryotes into two domains: bacteria and archaea.


3.16: Phylogenetic Trees - Biology

In scientific terms, the evolutionary history and relationship of an organism or group of organisms is called phylogeny. Phylogeny describes the relationships of one organism to others—such as which organisms it is thought to have evolved from, which species it is most closely related to, and so forth. Phylogenetic relationships provide information on shared ancestry but not necessarily on how organisms are similar or different.


Limitations of Phylogenetic Trees

Figure 3. This ladder-like phylogenetic tree of vertebrates is rooted by an organism that lacked a vertebral column. At each branch point, organisms with different characters are placed in different groups based on the characteristics they share.

It may be easy to assume that more closely related organisms look more alike, and while this is often the case, it is not always true. If two closely related lineages evolved under significantly varied surroundings or after the evolution of a major new adaptation, it is possible for the two groups to appear more different than other groups that are not as closely related. For example, the phylogenetic tree in Figure 3 shows that lizards and rabbits both have amniotic eggs, whereas frogs do not yet lizards and frogs appear more similar than lizards and rabbits.

Another aspect of phylogenetic trees is that, unless otherwise indicated, the branches do not account for length of time, only the evolutionary order. In other words, the length of a branch does not typically mean more time passed, nor does a short branch mean less time passed— unless specified on the diagram. For example, in Figure 3, the tree does not indicate how much time passed between the evolution of amniotic eggs and hair. What the tree does show is the order in which things took place. Again using Figure 3, the tree shows that the oldest trait is the vertebral column, followed by hinged jaws, and so forth. Remember that any phylogenetic tree is a part of the greater whole, and like a real tree, it does not grow in only one direction after a new branch develops. So, for the organisms in Figure 3, just because a vertebral column evolved does not mean that invertebrate evolution ceased, it only means that a new branch formed. Also, groups that are not closely related, but evolve under similar conditions, may appear more phenotypically similar to each other than to a close relative.


Phylogenetic Tree Distances

Abstract

Phylogenetic trees are mathematical objects which summarize the most recent common ancestor relationships between a given set of organisms. There is often a need to quantify the degree of similarity or discordance between two proposed trees. For instance, a person may be interested in knowing whether the phylogenetic trees reconstructed from two distinct sequence alignments are truly different, or if the differences are so minor as to be attributable only to statistical variation. In this article we summarize several of the most widely known methods for defining distances between phylogenetic trees, and provide examples of the calculations when feasible.


3.16: Phylogenetic Trees - Biology

A phylogenetic tree can be read like a map of evolutionary history. Many phylogenetic trees have a single lineage at the base representing a common ancestor. Scientists call such trees rooted, which means there is a single ancestral lineage (typically drawn from the bottom or left) to which all organisms represented in the diagram relate. Notice in the rooted phylogenetic tree that the three domains—Bacteria, Archaea, and Eukarya—diverge from a single point and branch off. The small branch that plants and animals (including humans) occupy in this diagram shows how recent and miniscule these groups are compared with other organisms. Unrooted trees don’t show a common ancestor but do show relationships among species.

Figure 1. Both of these phylogenetic trees shows the relationship of the three domains of life—Bacteria, Archaea, and Eukarya—but the (a) rooted tree attempts to identify when various species diverged from a common ancestor while the (b) unrooted tree does not. (credit a: modification of work by Eric Gaba)

In a rooted tree, the branching indicates evolutionary relationships (Figure 2). The point where a split occurs, called a branch point, represents where a single lineage evolved into a distinct new one. A lineage that evolved early from the root and remains unbranched is called basal taxon. When two lineages stem from the same branch point, they are called sister taxa. A branch with more than two lineages is called a polytomy and serves to illustrate where scientists have not definitively determined all of the relationships. It is important to note that although sister taxa and polytomy do share an ancestor, it does not mean that the groups of organisms split or evolved from each other. Organisms in two taxa may have split apart at a specific branch point, but neither taxa gave rise to the other.

Figure 2. The root of a phylogenetic tree indicates that an ancestral lineage gave rise to all organisms on the tree. A branch point indicates where two lineages diverged. A lineage that evolved early and remains unbranched is a basal taxon. When two lineages stem from the same branch point, they are sister taxa. A branch with more than two lineages is a polytomy.

The diagrams above can serve as a pathway to understanding evolutionary history. The pathway can be traced from the origin of life to any individual species by navigating through the evolutionary branches between the two points. Also, by starting with a single species and tracing back towards the “trunk” of the tree, one can discover that species’ ancestors, as well as where lineages share a common ancestry. In addition, the tree can be used to study entire groups of organisms.

Another point to mention on phylogenetic tree structure is that rotation at branch points does not change the information. For example, if a branch point was rotated and the taxon order changed, this would not alter the information because the evolution of each taxon from the branch point was independent of the other.

Many disciplines within the study of biology contribute to understanding how past and present life evolved over time these disciplines together contribute to building, updating, and maintaining the “tree of life.” Information is used to organize and classify organisms based on evolutionary relationships in a scientific field called systematics. Data may be collected from fossils, from studying the structure of body parts or molecules used by an organism, and by DNA analysis. By combining data from many sources, scientists can put together the phylogeny of an organism since phylogenetic trees are hypotheses, they will continue to change as new types of life are discovered and new information is learned.

Video Review



Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae

The internal transcribed spacer (ITS) region of 18-26S nuclear ribosomal DNA was sequenced in 12 representatives of the Compositae subtribe Madiinae and two outgroup species to assess its utility for phylogeny reconstruction. High sequence alignability and minimal length variation among ITS 1, 5.8S, and ITS 2 sequences facilitated determination of positional homology of nucleotide sites. In pairwise comparisons among Madiinae DNAs, sequence divergence at unambiguously aligned sites ranged from 0.4 to 19.2% of nucleotides in ITS 1 and from 0 to 12.9% of nucleotides in ITS 2. Phylogenetic relationships among ITS sequences of Hawaiian silversword alliance species (Argyroxiphium, Dubautia, and Wilkesia) and California tarweed taxa in Adenothamnus, Madia, Raillardella, and Raillardiopsis are highly concordant with a chloroplast DNA-based phylogeny of this group. Maximally parsimonious trees from ITS and chloroplast DNA data all suggest (a) origin of the monophyletic Hawaiian silversword alliance from a California tarweed ancestor, (b) closer relationship of the Hawaiian species to Madia and Raillardiopsis than to Adenothamnus or Raillardella, (c) paraphyly of Raillardiopsis, a segregate of Raillardella, and (d) closer relationship of Raillardiopsis to Madia and the silversword alliance than to Raillardella. These findings indicate that the ITS region in plants should be further explored as a promising source of nuclear phylogenetic markers.


The Family Tree

The process of evolution produces a pattern of relationships between species. As lineages evolve and split and modifications are inherited, their evolutionary paths diverge. This produces a branching pattern of evolutionary relationships.

By studying inherited species’ characteristics and other historical evidence, we can reconstruct evolutionary relationships and represent them on a “family tree,” called a phylogeny. The phylogeny you see below represents the basic relationships that tie all life on Earth together.


Milestones on the tree of life

Now that we know how to read a tree and consider geologic time scales, let’s relate topics of the upcoming readings: eukaryotes, green plants, fungi, animals, which are a few of the milestones of the evolution of major life forms, to the tree of life.

Phylogenetic tree of life built using ribosomal RNA sequences, after Karl Woese. Image credit: Modified from Eric Gaba, Wikimedia Commons.

Notice that the tree is divided into three clades: bacteria, archaea, and eukarya (the eukaryotes). Eukaryotes are a clade that contains green plants, fungi and animals, three taxon groups that are more closely related to each other than to all other taxa depicted on the this tree. As we move forward through the biodiversity module, use this image of the breadth of taxa on the tree to put the small fraction of life we will learn about in perspective.

The video below from the PBS series Eons summarizes key geologic time scale events and emphasizes the evolution of life milestones that will get us started to consider biodiversity.


Watch the video: Understanding Phylogenetic Trees 1 (November 2022).