Information

Identifying flying insect from southern Poland / Upper Silesia area

Identifying flying insect from southern Poland / Upper Silesia area


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Yesterday evening, I spotted this quite huge insect at my home in southern Poland (the exact location of the place). Unfortunately, I have only a very low quality pictures available at the moment:

Some details:

  • found in southern Poland / eastern Europe,
  • about 3 cm long,
  • quite fat (if I may say so),
  • seems to have 4 pairs / 8 legs in total,
  • airborne / able to fly (though quite slowly).

The quite huge (as per typical insect in Poland) size of this species was kind of surprise for me, but its behavior was even more surprising to me:

  1. As pictured, it was able / willing to rest (copulate?) one on another even in groups of three (I failed to picture this), remaining still / not moving at all even for as long as half of hour.
  2. After such resting / copulation ended or was interrupted the species on top was thrown off, falling down to the windowsill beneath.
  3. It was then lying there up-side-down on its back, again remaining still and not moving at all even for 10-15 minutes.
  4. Then it was kind of waking up from some kind of stasis, turning over walking a little bit around the windowsill.
  5. Then it was flying up, flying around a little bit.
  6. Finally, it was trying to rest / copulate with the species still on my window's mosquito net (or with the couple being there).

And then, the whole cycle was repeating until (late evening) only one species remained on mosquito net, which was also gone late in the night (not found the following morning).


Found it, with a lot of help from my local neighbors. It is Melolontha melolontha or cockchafer.

From English Wikipedia:

The cockchafer, colloquially called May bug or doodlebug is a European beetle of the genus Melolontha, in the family Scarabaeidae.

Once abundant throughout Europe and a major pest in the periodical years of "mass flight", it had been nearly eradicated in the middle of the 20th century through extensive use of pesticides and has even been locally exterminated in many regions. However, since an increase in regulation of pest control beginning in the 1980s, its numbers have started to grow again.

Here, where I spotted this insect (Upper Silesia) it is called in local language (in Silesian language) "julik", which is quite correct, since they seems to appear in July.

However, as per above cited part and as per Polish counterpart to above cited article, officially this insect is called after May, either "May bug" (English) or "Chrabąszcz majowy" (Polish). Most likely because adult forms of this species appears mature by the end of April and through May.


The earliest farming communities north of the Carpathians: The settlement at Gwoździec site 2

The appearance of the Linear Pottery Culture (LBK) on Poland territory initiated the process of neolithization in the area. However, as we will see in this article, this colonization took place later than previously thought. The stage, which in Poland is called as the early phase, actually corresponds only to the Fomborn/Ačkovy stage of LBK, and the earliest dating currently indicates around 5350 BC. Due to the small number of sites from this phase excavated on a large scale in Poland, this stage of the culture’s development is poorly known. The Gwoździec Project is focused on the earliest stage of LBK settlement in south-eastern Poland. Excavation at the site was finished in 2018. Therefore, the article presents preliminary results of interdisciplinary analyzes, such as research on ceramics, flint production and use, and botanical remains. They point to various aspects of the economy of these early agricultural communities and significantly enrich the knowledge of this period in Central Europe. They also expose the chronological development of the oldest LBK development stage in Poland.

Citation: Czekaj-Zastawny A, Rauba-Bukowska A, Kukułka A, Kufel-Diakowska B, Lityńska-Zając M, Moskal-del Hoyo M, et al. (2020) The earliest farming communities north of the Carpathians: The settlement at Gwoździec site 2. PLoS ONE 15(1): e0227008. https://doi.org/10.1371/journal.pone.0227008

Editor: Peter F. Biehl, University at Buffalo - The State University of New York, UNITED STATES

Received: July 12, 2019 Accepted: December 9, 2019 Published: January 15, 2020

Copyright: © 2020 Czekaj-Zastawny et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research presented in this paper has been funded by the National Science Centre, Poland, within the grant No. NCN 2014/15/B/HS3/02460 (2015-2019), „The oldest phase of the Linearband Culture in Lesser Poland (5600/5500-5300 BC) - genesis, dating, settlement, economy”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.


Introduction

Within the last decades, the protection and conservation of nature and biodiversity has become an important issue on the European political agenda. Forest ecosystems have been identified as a major source of biodiversity (FAO 2014), and the biocentric view recognizing “naturalness” of forests as an intrinsic value has been strengthened (EEA 2014). As genetic diversity is a central part of biodiversity, factors impacting the gene pool of European forest populations need to be scrutinized (e.g. Geburek and Turok 2005 Graudal et al. 2014 Koskela and Lefèvre 2013 Koskela et al. 2007 Wickneswari et al. 2014). Throughout the last three centuries, European forests experienced fundamental changes and the genetic composition of most of today’s tree populations have been strongly affected by man (EEA 2014). Starting in the eighteenth century, artificial regeneration with non-local seeds became common practice, including the transfer of conifers such as Norway spruce on a large scale (e.g. Endres 1905 Koskela et al. 2014 Schmidt-Vogt 1977 see also Table 1). Seeds from Central Europe (Germany, Austria) became a particularly cherished commodity (e.g. Almäng 1996 Dering 2008 Lines 1987).

Norway spruce (Picea abies [L.] Karst.) is one of the most important tree species in Central and Northern Europe, due to its high ecological plasticity and economic versatility (Schmidt-Vogt 1977). Its range is differentiated into three distinct areas: (a) Alpine, (b) Hercyno-Carpathian and (c) Baltic-Nordic region (Fig. 1). During the last three centuries, the distribution of Norway spruce has been significantly enlarged by cultivation (Schmidt-Vogt 1977 Spiecker 2003). Today, P. abies covers an area of approximately 30,000,000 ha in Europe more than 20% of the current distribution is located outside its native range, primarily growing on former broadleaved forest sites at low altitude (Klimo et al. 2000). In some countries, such as Germany, France or Poland, the artificial range vastly exceeds the native occurrence (Jansson et al. 2013). In the majority of cases, unknown seed sources were used for these afforestations. Although this human-mediated gene flow must have had a significant impact on Norway spruce populations, our knowledge about historic transfer is still very limited (e.g. Geburek 2005).

Cultivations of Norway spruce in Europe until 1800

The specific origin of spruce provenances at a given site cannot be identified by phenotypic characteristics, although the crown architecture (Geburek et al. 2008) or colour of immature cones (Geburek et al. 2007) may provide clues about an elevational transfer. Molecular data (e.g. Tollesfrud et al. 2008) can serve as a valuable baseline to study the historic transfer of forest reproductive material (FRM) however, high-resolution data are not available throughout the current distribution range of Norway spruce.

Local adaptation of Norway spruce is mainly determined by the growing period: early flushing and early growth cessation are characteristics of northern or high-altitude provenances when translocated to lower altitude or southern sites (Gomöry et al. 2012 Jansson et al. 2013). These provenances generally grow slowly in lower elevations or southern regions (Giertych 2007), while a northward transfer or a movement to higher elevations results in higher growth rates in most cases (e.g. Frank et al. 2017 König 2005). However, in the latter case, plants are threatened by damage from early frost (Jansson et al. 2013). An altitudinal transfer of about 200 m or a 6° northward transfer of seed sources from Central Europe is nevertheless possible without ecological or economic risks (Bergmann 1965 Giertych 2007 König 2005 Konôpka and Šimak 1990). The translocation of Romanian provenances by 12° of latitude has been suggested, while a movement of Alpine provenances outside the Alps is generally not recommended (König 2005). Within Scandinavia, a northward transfer should be limited to 3° latitude (Bergmann 1965 Giertych 2007). Provenances which thrive well under very different ecological conditions originate from the Eastern Carpathians, Bihor Mountains, and the mountainous region extending from the Beskides and the Ore Mountains to the foothills of the Harz (Budeanu et al. 2012 König 2005 Matras 2009).

The objective of this study is to review historic records of Norway spruce translocations. These findings are of special importance, as genetic data tracking the original seed source are presently not available on a European scale. Historic records can help to identify translocation “hotspots” or areas comprising putative autochthonous populations, which is of special interest for tree breeding or gene conservation (e.g. Rajora and Mosseler 2001 Spiecker 2000). The disclosure of FRM trading routes is vital for interpreting results from recent molecular studies. Data about historic seed transfer may also contribute to the understanding of intraspecific variation patterns, as proposed by Gomöry et al. (2012). The importance of the integration of historic aspects for assessment of forest genetic resources in Europe has also been pointed out by several other authors (Laikre et al. 2006 Schoppa 2000 Ledig 1992).


1 INTRODUCTION

Exposure to toxic concentration of metals and metalloids, commonly known as heavy metals, remains one of the major environmental health risks around the world. The release of large amounts of metal(loid)s to the soil through either natural geological or anthropogenic processes has adverse effects on physiological processes in plants. This can cause reduced growth rates and even death in sensitive species (Sarma et al., 2018 ). Some species, however, have adapted to highly contaminated metalliferous soils and can survive and reproduce in these hostile habitats (Baker, 1987 Ernst et al., 2008 Reeves et al., 2017 ). This tolerance is achieved through the evolution of a complex network of homeostatic mechanisms that regulate metal uptake or exclusion, transport to aerial parts, allocation and detoxification in plant tissues (Memon, 2016 ). Some of the metals are actually micronutrients (e.g., copper, iron, manganese, molybdenum, nickel, zinc) that—at adequate concentrations—are essential for the normal growth and metabolism of plants. In excessive amounts, however, they may cause toxicity. Plants thus maintain the concentrations of essential metal ions in different cellular compartments within their physiological limits. Such control is particularly interesting in metal-hyperaccumulating plants, that accumulate extremely high amounts of metal(loid)s in their shoots without developing symptoms of toxicity (Clemens et al., 2002 ). Possessing the extreme evolutionary traits of metal hyperaccumulation and hypertolerance makes these plants ideally suited for investigations of the regulatory mechanisms that underlie plant metal homeostasis and adaptation to metalliferous environments.

Recent advances in plant genomics, transcriptomics, proteomics and metabolomics have greatly improved our understanding of the physiological, ecological and evolutionary mechanisms involved in hyperaccumulators’ responses to essential metal(oid)s (Babst-Kostecka et al., 2018 Dar et al., 2018 Dubey et al., 2018 Kajala et al., 2019 Krämer, 2010 Manara et al., 2020 Peng et al., 2020 Sarma et al., 2018 Shanmugam et al., 2013 Verbruggen et al., 2009 ). These studies were greatly facilitated by the variability in hyperaccumulation and hypertolerance among closely related model species and their populations. For instance, quantitative trait loci (QTL) analyses performed on progenies from the inter- and intraspecific crosses between hyperaccumulating, tolerant versus excluder, or non-tolerant (metal sensitive) plants identified several QTLs for metal accumulation (Deniau et al., 2006 Filatov et al., 2007 Frérot et al., 2010 Willems et al., 2007 , 2010 ). Associations of these QTL regions with hyperaccumulation traits and further transcriptomic and proteomic approaches identified sets of candidate genes and metabolic pathways that regulate metal uptake, transport, distribution and detoxification (Corso et al., 2018 Krämer et al., 2007 van de Mortel et al., 2006 Plessl et al., 2010 Schvartzman et al., 2018 Weber et al., 2004 ). Overall, these studies have demonstrated that the genetic determinants of metal hyperaccumulation are constitutively overexpressed in hyperaccumulators compared to non-accumulator species.

While most existing research has focused on the overall growth patterns of plant shoots and roots, relatively little is known about metal homeostasis in seeds. Once nutrients are allocated to the leaves, they need to be further re-allocated to the seeds in order to complete the plant's life cycle. Concentrations at which elements are supplied to and stored within seeds are critical to initiate the later development of the seedlings and thereby ensure reproductive success. It is generally believed that tolerant plants keep their seeds free from toxic concentrations of metal(loid)s to provide their offspring with a “fresh start” on metalliferous soils (Bothe & Słomka, 2017 Ernst et al., 2000 ). Accordingly, the metal translocation from maternal to filial tissues, as well as their distribution and concentration within the seeds of hyperaccumulating plants must be strictly controlled to meet the nutrient requirements and at the same time reduce toxicity risk (Eroglu, 2018 ). It is also expected that the threshold for toxicity is higher in seeds of hyperaccumulators compared to their non-tolerant relatives. Yet, more research efforts investigating the variation in the elemental distribution in the seeds are needed to gain insight into adaptation and hypertolerance at the seed development stage in hyperaccumulators of essential transition micronutrients that may become toxic in excessive amounts.

Zinc (Zn) is the second most abundant transition metal in living organisms after iron (Fe) (Marschner, 1995 ). It has important structural, catalytic and activating functions in plants (Lehmann et al., 2014 ) and in most crops its concentration is below 100 mg/kg dry weight (Pilon-Smits et al., 2009 ). Beyond these concentrations, Zn can cause toxicity by replacing other divalent cations involved in the functioning of photosynthetic enzymes (e.g. Fe, magnesium (Mg) and Mn). This replacement of elements interferes with several biochemical, physiological, and structural aspects of plant processes, with adverse effects on photosynthesis, metabolism and plant growth (Dubey et al., 2018 Szopiński et al., 2019 Van Assche & Clijsters, 1986 , 1990 ). In particular, excess Zn has frequently been shown to modify the root system architecture of plants (Dietrich et al., 2019 ), cause leaf chlorosis associated with the decline of photosystem II efficiency parameters (Balafrej et al., 2020 ), or induce reactive oxygen species generation (Fernàndez et al., 2012 ). The first essential pool of Zn in a plant's life cycle is seed Zn, which is mobilized in the growing seedling. Thus, the optimal transport and storage of Zn into seeds is critical for early seedling growth and development (Larkins & Vasil, 2013 Raboy, 1997 ). Plants differ markedly in their ability to load Zn into seeds and a relatively wide range of Zn concentration in seeds (e.g. 25–100 mg/kg) is considered optimal for early seedling growth (Jones et al., 1991 ). It has been demonstrated that in cultivated species, the movement of Zn between vegetative tissues and reproductive organs and seeds is affected by the amount of Zn in the former (Longnecker & Robson, 1993 ). By contrast, the strategy and natural variation in Zn allocation to the seeds of Zn-hyperaccumulating plants are still little explored.

Arabidopsis halleri (L.) O'Kane and Al-Shehbaz (family Brassicaceae) is an attractive model species to study various aspects of plant adaptation to metalliferous sites, particularly because of its heritable intraspecific variation in Zn hyperaccumulation and hypertolerance capacities (Honjo & Kudoh, 2019 ). Additionally, A. halleri is a pseudometallophyte (facultative metallophyte), that is, a taxon with populations that grow and reproduce on both metalliferous and non-metalliferous sites (Pollard et al., 2002 , 2014 ). Extreme differences in edaphic conditions between these types of habitats promote rapid differentiation of metallicolous (M) and non-metallicolous (NM) populations. This local adaptation makes pseudometallophytes particularly relevant for comprehensive, quantitative investigations of the variation in traits involved in plant adaptation to metal-contaminated soils (Babst-Kostecka et al., 2014 , 2016 Jimenez-Ambriz et al., 2007 Sailer et al., 2018 ). Recent advances have placed A. halleri at the center of nutrient research in metal hyperaccumulating plants, but existing studies have exclusively addressed vegetative and not reproductive tissues. This could be related to the fact that most studies have been performed in relatively short-term experiments that involved destructive harvest prior to the seed-development stage. Still, it is surprising that, to the best of our knowledge, the important elemental concentration and distribution within seeds from natural locations of this intensely studied species have not yet been investigated.

In this study, we investigated the spatial distribution and concentration of elements within the seeds of A. halleri populations from non-metalliferous and metalliferous locations in Southern Poland. We selected four populations, for which earlier investigations of vegetative organs have reported significant quantitative variation in Zn hyperaccumulation and hypertolerance capacities (Babst-Kostecka et al., 2018 Meyer et al., 2010 ). While our main focus was on identifying Zn allocation strategies to seeds of non-metallicolous and metallicolous plants, we also report on the patterns of composition and distribution of other mineral nutrients in these seeds. This is to identify possible interactions between Zn and other elements, as well as disorders in seed homeostasis in the context of adaptation to metalliferous environments. We employed micro-particle induced X-ray emission (micro-PIXE) (Mandò & Przybyłowicz, 2016 Mesjasz-Przybyłowicz & Przybyłowicz, 2002 ). Due to the high resolution and sensitivity in performing elemental mapping and quantification of the data extracted from arbitrarily selected micro-areas of the investigated tissues, this microanalytical method is perfectly suited for trace element analysis of biological samples (Mesjasz-Przybyłowicz & Przybyłowicz, 2002 Mesjasz-Przybyłowicz & Przybyłowicz, 2011 Przybyłowicz et al., 1997 ).

Using this approach, we address the following questions:

  1. Do seeds of A. halleri plants from anthropogenic and natural habitats differ in elemental distribution and concentration?
  2. Is Zn accumulation and allocation inside a seed controlled differently by metallicolous and non-metallicolous plants?
  3. Do metallicolous plants possess a strategy to combat metal stress at the seed level?

In addition, we discuss the emerging patterns of elemental allocation to the seeds in the context of the stark contrast between study sites regarding: differences in hyperaccumulation levels in A. halleri leaves, root-to-shoot translocation, and soil contamination that we quantified in complementary chemical analyses.


Redakcja

prof. dr hab. Wiesław Fałtynowicz
dr Ewa Stefańska-Krzaczek

Redaktrzy Tematyczni

prof. dr hab. Jadwiga Anioł-Kwiatkowska &ndash Uniwersytet Wrocławski (taksonomia)
prof. dr hab. Józef K. Kurowski &ndash Uniwersytet Łódzki (fitosocjologia)
prof. dr hab. Aleksandra Samecka-Cymerman &ndash Uniwersytet Wrocławski (ekologia)
prof. dr hab. Stanisław Wika &ndash Uniwersytet Śląski (florystyka)

Redaktor Statystyczny
dr hab. Krzysztof Topolski

Redaktor Językowy
Zbigniew Fałtynowicz


38 Odonatrixo11(1) Paweł BUCZYŃSKI. Zakład Zoologii UMCS, ul. Akademicka 19, Lublin

1 38 Odonatrixo11(1) Polskie i dotyczące Polski prace odonatologiczne. 13. Rok 2014 i uzupełnienie wykazu prac z roku 2013 Polish and dedicated to Poland odonatological papers. 13. The year 2014 and the supplement for the year 2013 Paweł BUCZYŃSKI Zakład Zoologii UMCS, ul. Akademicka 19, Lublin Abstract. The author presents a list of Polish and dedicated to Poland odonatological papers published in the year During that time, 36 papers of various kinds were published, and one M.Sc. thesis was written. Four papers published in the year 2013 are given too. Key Words: Odonata, dragonflies, bibliography, 2014, Poland, Polish authors. Poniżej zestawiam prace na temat ważek Polski i/lub stworzone przez odonatologów polskich, które ukazały się w roku kalendarzowym Jako pierwszy podany jest tytuł w języku publikacji, po myślniku w języku streszczenia. W nawiasie kwadratowym podano tłumaczenie tytułu na angielski, jeśli praca go nie zawiera. Rozdziały w monografiach 1. BISTUŁA-PRUSZYŃSKI G Ważki (Odonata) rezerwatu Stawy Siedleckie. Dragonflies (Odonata) of the nature reserve Stawy Siedleckie. [w:] M. FALKOWSKI, K. NOWICKA- FALKOWSKA, M. OMELIANIUK (red.). Bogactwo przyrodnicze rezerwatu Stawy Siedleckie. Monografia przyrodnicza. [Environmental richness of the reserve Siedleckie Fish Ponds. Environmental monograph]. Biuro Badań, Monitoringu i Ochrony Przyrody EcoFalk, Towarzystwo Ochrony Siedlisk ProHabitat, Siedlce Białystok: BŁOSZYK J., CHRZANOWSKI A., DOBROWOLSKI D., KŮRKA A., KUŹNIK-KOWALSKA E., MAZUR M., OLSZEWSKI P., PAWLIKOWSKI K., PAWLIKOWSKI T., PROĆKÓW M., SKARŻYŃSKI D., SZYM- KOWIAK P Bezkręgowce [Invertebrates]. [w:] R. KNAPIK, A. RAJ (red.). Przyroda Karkonoskiego Parku Narodowego [Nature of the Karkonoski National Park]. Karkonoski Park Narodowy, Jelenia Góra: &ScaronÁCHA D., DAVID S., WALDHAUSER M., BUCZYŃSKI P., TOŃCZYK G., MAKOMASKA-JUCHIE- WICZ M., MARTYNOV A.V., HELTAI M.G., MANCI C.O., JOVIĆ M Draft red list of dragonflies (Odonata) of the Carpathians. [in:] J. KADLEČÍK (red.). Carpathian red list of forest habitats and species. Carpathian list of invasive alien species (draft). The State Nature Conservancy of the Slovak Republic, Banská Bystrica: Artykuły i doniesienia naukowe 4. BUCZYŃSKI P., BUCZYŃSKA E Interesujące obserwacje ważek (Odonata) w piaskowni w Borowej (Polska środkowo-wschodnia). Interesting observations of dragonflies (Odonata) in the sand excavation in Borowa (middle-eastern Poland). Odonatrix, 10(2):

2 Odonatrixo11(1) BUCZYŃSKI P., BUCZYŃSKA E Aeshna affinis VANDER L. i Crocothemis erythraea (BRULLÉ) (Odonata: Aeshnidae, Libellulidae) stwierdzone koło Suwałk (Polska północno-wschodnia). Aeshna affinis VANDER L. and Crocothemis erythraea (BRULLÉ) (Odonata: Aeshnidae, Libellulidae) recorded near Suwałki (north-eastern Poland). Wiadomości Entomologiczne, 33(4): BUCZYŃSKI P., MARCZAK D., TOŃCZYK G., LUKA&ScaronUK A., NAREWSKA-PRELLA K Ważki (Odonata) Rezerwatu Biosfery Puszcza Kampinoska : nowe dane i stan poznania. Dragonflies (Odonata) of the Biosphere Reserve Kampinos Forest : new data and the state of knowledge. Odonatrix, 10(1): BUCZYŃSKI P., MARCZAK D., TOŃCZYK G., MIKOŁAJCZUK P., HORABIK G., LIBERSKI J., MISZTA A., RYCHŁA A., BRODACKI M., BUCZYŃSKA E., DARAŻ B., GRZĘDZICKA E., JANKOWSKA B., KOWALEWCZANY D., KRAKOWSKA K., LIS Ł., MIŁACZEWSKA E., OSTALSKA A., PEPŁOWSKA- MARCZAK D., SZUBERT M., SZUBERT P., SIEKIERZYŃSKA J., SZYMAŃSKI J., TARKOWSKI A., TY- BURSKI Ł., WENDZONKA J., WIERZBIENIEC G Ważki (Odonata) stwierdzone podczas X Ogólnopolskiego Sympozjum Odonatologicznego PTE Ważki Rezerwatu Biosfery «Puszcza Kampinoska» (Izabelin, VI 2013 r.). Dragonflies (Odonata) recorded during the 10 th National Symposium of Odonatology of the Polish Entomological Society Dragonflies of the Biosphere Reserve «Kampinos Forest» (Izabelin, June 28 30, 2013). Odonatrix, 10(2): BUCZYŃSKI P., SHAPOVAL A.P., BUCZYŃSKA E Pantala flavescens at the coast of the Baltic Sea (Odonata: Libellulidae). Odonatologica, 43(1/2): BUCZYŃSKI P., SZLAUER-ŁUKASZEWSKA A Dysjunktywne stanowisko Sympecma paedisca (BRAUER, 1877) (Odonata: Lestidae) w województwie lubuskim (Polska zachodnia). A disjunctive site of Sympecma paedisca (BRAUER, 1877) (Odonata: Lestidae) in Lubuskie Province (western Poland). Wiadomości Entomologiczne, 33(4): DROGOŃ B Występowanie ważek z rodziny gadziogłówkowatych (Gomphidae) na miejskim odcinku rzeki Wisłok w Rzeszowie. [Occurrence of clubtail dragonflies (Gomphidae) in the urban section of the River Wisłok in Rzeszów]. Biologia w Szkole, 2/2014: DZIEKOŃSKA-RYNKO J., ROKICKI J., MIERZEJEWSKA K In vitro infection experiments with eggs of the nematode Contracaecum rudolphii HARTWICH, 1964 (sensu lato) targeting aquatic insect larvae (Odonata: Coenagrionidae and Libellulidae Trichoptera: Integripalpia) as possible intermediate hosts. Oceanological and Hydrobiological Studies, 43(2): GNIADKOWSKI J Ważki (Odonata) okolic Częstochowy. Część VII. Mirowski Przełom Warty, Bagno Tesarki. Dragonfly (Odonata) in the nearby Częstochowa. Part VII. The Mirowski Gorge of Warta River, Marshland Tesarki [sic!]. Biuletyn Częstochowskiego Koła Entomolgicznego, 12: GRAND D., MARINOV M., COOK C., JOURDAN H., ROUYS S., THEUERKAUF J Identification key to adult Odonata of New Caledonia and Wallis and Futuna. Odonatologica, 43(3/4):

3 40 Odonatrixo11(1) 14. HUPAŁO K., RACHALEWSKI M., RACHALEWSKA D., TOŃCZYK G Gregarine parasitism in two damselfly hosts: Comparison between species, sexes, and sites (Odonata: Calopterygidae). Odonatologica, 43(3/4): HUPAŁO K., TOŃCZYK G New Data on the Range Extension of Trithemis arteriosa (BURMEISTER, 1839) (Odonata) in Turkey. Acta Zoologica Bulgarica, 66(4): JARZEMBOWSKI P., MATRAJ M Pierwsze stwierdzenia chronionego gatunku ważki (Odonata) Sympecma paedisca (BRAUER, 1877) w województwie dolnośląskim. First records of the protected dragonfly (Odonata) Sympecma paedisca (BRAUER, 1877) in the Lower Silesia. Wiadomości Entomologiczne, 33(1): ŁUKASIK D Stwierdzenie iglicy małej Nehalennia speciosa (CHARPENTIER, 1840) (Odonata, Coenagrionidae) w Kampinoskim Parku Narodowym. The record of Sedgling Nehalennia speciosa (CHARPENTIER, 1840) (Odonata, Coenagrionidae) in the Kampinos National Park. Odonatrix, 10(1): KŁONOWSKA-OLEJNIK M., BUCZYŃSKI P Dysjunktywna populacja Cordulegaster bidentata SÉLYS, 1843 (Odonata: Cordulegastridae) na Pogórzu Wiśnickim (Polska południowa). Disjunctive population of Cordulegaster bidentata SÉLYS, 1843 (Odonata: Cordulegastridae) in the Wiśnickie Foothills (Southern Poland). Wiadomości Entomologiczne, 33(1): MIKOŁAJCZUK P Stwierdzenie wylotu drugiej generacji tężnicy małej Ischnura pumilio (CHARPENTIER, 1825) i tężnicy wytwornej Ischnura elegans (VANDER LINDEN, 1820) (Odonata: Coenagrionidae) w Polsce środkowo-wschodniej. A record of the emergence of second generation of the Small Bluetail Ischnura pumilio (CHARPENTIER, 1825) and Common Bluetail Ischnura elegans (VANDER LINDEN, 1820) (Odonata: Coenagrionidae) in the Central-Eastern Poland. Odonatrix, 10(1): OBOLEWSKI K.T., STRZELCZAK A., ASTEL A.M., SAWCZYN J Short-Term Effects of Stream Restoration and Management on Macroinvertebrate Communities in Lowland Streams. International Journal of Engineering Research and Development, 6(4): OBOLEWSKI K., STRZELCZAK A., GLIŃSKA-LEWCZUK K Does hydrological connectivity affect the composition of macroinvertebrates on Stratiotes aloides L. in oxbow lakes? Ecological Engineering, 66: ŚNIEGULA S., DROBNIAK S.M., GOŁĄB M.J., JOHANSSON F Photoperiod and variation in life history traits in core and peripheral populations in the damselfly Lestes sponsa. Ecological Entomology, 39(2): THERRY G., ZAWAL A., BONTE D., STOKS R What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range? Biological Journal of the Linnean Society, 112(3): WACHOWICZ-OLSZAK M., MICHOŃSKI G Dragonflies (Odonata) of the Staw Goślicki pond in the forest of Puszcza Wkrzańska (NW Poland). Acta Biologica 20: Literatura i recenzje 25. ANONYMUS Wykaz publikacji dr Alicji MISZTY (w porządku chronologicznym). [List of publications of Dr. Alicja MISZTA (in chronological order)]. [w:] J.B. PARUSEL (red.). Ważki w ocenie siedlisk wodno-błotnych Górnego Śląska. Konferencja naukowa

4 Odonatrixo11(1) 41 z okazji jubileuszu 40-lecia pracy naukowej dr Alicji MISZTY, 27 listopada 2014, Katowice [Dragonflies in the assessment and the monitoring of aquatic habitats of Upper Silesia. Scientific conference on the occasion of 40 th anniversary of scientific work of Dr. Alicja MISZTA, 27 November 2014, Katowice]. Centrum Dziedzictwa Przyrody Górnego Śląska, Katowice: BUCZYŃSKI P Polskie i dotyczące Polski prace odonatologiczne. 12. Rok Polish and dedicated to Poland odonatological papers. 12. The year Odonatrix, 10(2): WENDZONKA J Recenzja. KORNIJÓW R., BUCZYŃSKI P. (red.). Jezioro Skomielno (Pojezierze Łęczyńsko-Włodawskie, Polska Wschodnia). Monografia przyrodnicza. Wydawnictwo Mantis, Olsztyn 2012, 368 pp. Review. KORNIJÓW R., BUCZYŃSKI P. (eds.). Lake Skomielno (Łęczna-Włodawa Lakeland, Eastern Poland). Environment Monograph. Mantis Publishing, Olsztyn 2012, 368 pp. Odonatrix, 10(2): Komunikaty zjazdowe 28. BOROŃ M Ważki jako bioindykatory narażenia człowieka na zanieczyszczenia środowiska naturalnego metalami ciężkimi. [Dragonflies as indicators of human exposure to environmental pollution by heavy metals]. [w:] J.B. PARUSEL (red.). Ważki w ocenie siedlisk wodno-błotnych Górnego Śląska. Konferencja naukowa z okazji jubileuszu 40- lecia pracy naukowej dr Alicji MISZTY, 27 Listopada 2014, Katowice [Dragonflies in the assessment and the monitoring of aquatic habitats of Upper Silesia. Scientific conference on the occasion of 40 th anniversary of scientific work of Dr. Alicja MISZTA, 27 November 2014, Katowice]. Centrum Dziedzictwa Przyrody Górnego Śląska, Katowice: CUBER P., MISZTA A., LIBERSKI J Znaczenie zapadlisk w Borowej Wsi dla zachowania różnorodności ważek. [The significance of sinkholes in Borowa Wieś for the maintenance of dragonfly diversity]. Ibidem: DOLNÝ A., MISZTA A Dragonflies in the assessment and the monitoring of aquatic habitats of Upper Silesia. Ibidem: GŁADYSZ M Określanie stopnia zanieczyszczenia zbiornika wodnego z użyciem wylinek Libellula quadrimaculata. [Determination of the pollution degree of the water body with the use of the exuviae of Libellula quadrimaculata]. Ibidem: JANKOWSKA B Magiczny świat ważek panny i smoki. [Magical world of dragonflies maidens and dragons]. Ibidem: KRAJEWSKI Ł Ważki w świetle oceny stanu siedlisk działek rolnośrodowiskowych Polski. [Dragonflies in the light of the assessment of habitats of agricultural parcels in Poland]. Ibidem: LIBERSKI J., BULA R., CUBER P., MISZTA A Stanowisko iglicy małej Nehalennia speciosa CHARPENTIER, 1840 w Chełmie Śląskim. [The site of pygmy damselfly Nehalennia speciosa CHARPENTIER, 1840 in Chełmno Śląskie]. Ibidem: MISZTA A Inwentaryzacje ważek w województwie śląskim w latach [Evaluations of dragonflies in the Silesian Province in the years ]. Ibidem: PROCHOT K., ŚLÓSARCZYK K., MORDARSKA-KEMPYS I., KLAMA A., DUDA W., SŁUPCZYŃSKI W Larwy ważek w badaniach monitoringu biologicznego wód powierzchiowych

5 42 Odonatrixo11(1) województwa śląskiego w latach [The larvae of dragonflies in the studies of biological monitoring of surface waters in the Silesian Province in the years ]. Ibidem: TOŃCZYK G., ANTCZAK O., GUSTA D Czerwona lista ważek województwa łódzkiego. [Red list of dragonflies of the Łódź Province]. Ibidem: PARUSEL J.B Między roślinami a zwierzętami. A jednak bezkręgowce [Between plants and animals. Yet, invertebrates. ] 1. Ibidem: 7 9. Prace przeglądowe i popularnonaukowe 39. GŁADYSZ M., DOLEŻYCH B Narządy zmysłów i budowa mózgu ważek w zestawieniu z innymi owadami. Sense organs and the construction of the brain of dragonflies in comparison to other insects. Odonatrix, 10(2): STANIEC B., BUCZYŃSKA A., BUCZYŃSKI P., CHOBOTOW J., ANTONIEWSKA A Ścieżka przyrodnicza Doliną Cisowej. [Nature educational path of the valley of the Cisowa Stream]. Arboretum w Bolestraszycach, Bolestraszyce. Prace magisterskie 41. TARKOWSKI A Poszukiwanie i analiza związku między składem ważek (Odonata) a różnorodnością siedliskową w nizinnych ciekach. Exploration and analysis of the relationship between the composition of dragonflies (Odonata) and habitat diversity in lowland streams. Praca magisterska, Uniwersytet Warszawski, Międzywydziałowe Studia Ochrony Środowiska, Warszawa. Promotor: dr hab. Paweł KOPERSKI. 1 biogram naukowy dr Alicji MISZTY

Maria WISZNIOWSKA. ul. Pod Kasztanami 79/1, Katowice:

Odonatrix 13_5 (2017) Ważki (Odonata) obserwowane nad Stawem Górnik w Katowicach (Polska, Górny Śląsk) Dragonflies (Odonata) observed at the "Górnik" Pond in Katowice (Poland, Upper Silesia) Maria WISZNIOWSKA


References

Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341. Retrieved 2019-07-26, from https://doi.org/https://pubs.geoscienceworld.org/msa/elements/article-abstract/2/6/335/137720/uranium-mill-tailings-geochemistry-mineralogy-and. https://doi.org/10.2113/gselements.2.6.335

Adamski P, Kosior A, Witkowski Z (2010) Changes in insect pollinators fauna in the neighbourhood of the Czorsztyn-Niedzica and Sromowce Wyżne water reservoirs system. Monografie Pienińskie 2:185–193

Air pollution from electricity-generating large combustion plants (2008) (Tech. Rep. No. 4/2008). European Environment Agency

Alava JJ, Gobas FAPC (2016) Modeling 137Cs bioaccumulation in the salmon–resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident. Science of The Total Environment 544:56–67. https://doi.org/10.1016/j.scitotenv.2015.11.097

Aliyu AS, Evangeliou N, Mousseau TA, Wu J, Ramli AT (2015) An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Environment International 85:213–228. https://doi.org/10.1016/j.envint.2015.09.020

AlRafea K, Elkamel A, Abdul-Wahab SA (2016) Cost-analysis of health impacts associated with emissions from combined cycle power plant. Journal of Cleaner Production 139:1408–1424. https://doi.org/10.1016/j.jclepro.2016.09.001

Anthony S (2014) California’s new solar power plant is actually a death ray that’s incinerating birds mid-flight. ExtremeTech. Retrieved 2017-08-12, from https://www.extremetech.com/extreme/188328-californias-new-solar-power-plant-is-actually-a-death-ray-thats-incinerating-birds-mid-flight

Aoki M, Rothwell G (2013) A comparative institutional analysis of the Fukushima nuclear disaster: lessons and policy implications. Energy Policy 53:240–247. https://doi.org/10.1016/j.enpol.2012.10.058

Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition 46(1-2):52–66. Retrieved from. https://doi.org/10.1002/anie.200602373

Armstrong A, Burton RR, Lee SE, Mobbs S, Ostle N, Smith V, Whitaker J (2016) Groundlevel climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environmental Research Letters 11 (4):044024. Retrieved from http://stacks.iop.org/1748-9326/11/i=4/a=044024?key=crossref.34507302ae48d08fac71f973b2c9a434. https://doi.org/10.1088/1748-9326/11/4/044024

Augustyn L (2010) The influence of the Czorsztyn-Niedzica and Sromowce Wyzne hydroelectric power station on the ichthyofauna of the dunajec river in the Pieniny region. Pieniny – Zapora – Zmiany – Monografie Pienińskie 2:227–239

Baig MN (1992) Natural revegetation of coal mine spoils in the rocky mountains of Alberta and its significance for species selection in land restoration. Mountain Research and Development 12(3):285–300. Retrieved 2017-10-31, from http://www.jstor.org/stable/3673671. https://doi.org/10.2307/3673671

Bęk M, Bielecki A (2007) Neural systems for short-term forecasting of electric power load. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Adaptive and natural computing algorithms: 8th international conference, Icannga 2007, Warsaw, Poland, April 11-14, 2007, Proceedings, Part II. Retrieved from. https://doi.org/10.1007/978-3-540-71629-7_16. Springer, Berlin, pp 133–142

Balangue-Tarriela MIR, Mendoza JP (2015) Updates on the geothermal energy development in the Philippines. In: World Geothermal Congress 2015. Proceedings

Banerjee S, Williums A, Biswas S, Manjhi R, Mishra T (1996) Dynamics of natural ecorestoration in coal mine overburden of dry deciduous zone of M.P. India. Ecology, Environment and Conservation 2:97–104

Becerra TA, Wilhelm M, Olsen J, Cockburn M, Ritz B (2013) Ambient air pollution and autism in Los Angeles county, California. Environmental Health Perspectives 121(3):380–386. https://doi.org/10.1289/ehp.1205827

Beeson WL, Abbey DE, Knutsen SF (1998) Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Adventist Health Study on Smog. Environmental Health Perspectives 106(12):813–822

Ben-Amotz A, Yatziv S, Sela M, Greenberg S, Rachmilevich B, Shwarzman M, Weshler Z (1998) Effect of natural beta-carotene supplementation in children exposed to radiation from the Chernobyl accident. Radiation and Environmental Biophysics 37(3):187–193

Benjamin S (2009) Save birds by promoting wind energy. Scitizen

Bertani R (2015) Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43

Bhattacharyya SC (1997) An estimation of environmental costs of coal-based thermal power generation in India. Int J Energy Res 21(3):289–298. 10.1002/(SICI)1099-114X(199703)21:3 < 289::AID-ER263 > 3.0.CO2-N

Bickel P, Friedrich R (2005) European commission, directorate-general for research, sustainable energy systems, European commission, Office for Official Publications of the European Communities. Externe: Externalities of energy : Methodology 2005 update. Luxembourg: Office for Official Publications of the European Communities. (OCLC: 500416990)

Biegler T, Zhang D-K, Sciences AAOT, Engineering (2009) The Hidden Costs of Electricity : Externalities of Power Generation in Australia, Parkville, Vic. : Australian Academy of Technological Science and Engineering. Retrieved 2017-07-19, from http://trove.nla.gov.au/work/28650786

Bielecka M, Król-Korczak J (2010a) Fuzzy decision support system for post-mining regions restoration designing. In: Artificial intelligence and soft computing. Retrieved 2017-10-31, from https://link.springer.com/chapter/10.1007/978-3-642-13208-7_2. https://doi.org/10.1007/978-3-642-13208-7_2. Springer, Berlin, pp 11–18

Bielecka M, Król-Korczak J (2010b) Hybrid expert system aiding design of post-mining regions restoration. Ecol Eng 36(10):1232–1241. Retrieved 2017-10-31, from http://www.sciencedirect.com/science/article/pii/S0925857410001096. https://doi.org/10.1016/j.ecoleng.2010.04.023

Bolsunovsky A, Dementyev D (2011) Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident. J Environmental Radioactivity 102(11):1062–1064. https://doi.org/10.1016/j.jenvrad.2011.06.007

Borozan D, Starcevic DP, Adzic S (2015) The internalization of external costs of CHP plants in Croatia. Energy Procedia 75:2596–2603. https://doi.org/10.1016/j.egypro.2015.07.321

Brandt J, Silver JD, Christensen JH, Andersen MS, Bønløkke JH, Sigsgaard T, Frohn LM (2013) Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system – an integrated modelling approach. Atmos Chem Phys 13(15):7725–7746. https://doi.org/10.5194/acp-13-7725-2013

Bridges A, Felder FA, McKelvey K, Niyogi I (2015) Uncertainty in energy planning: estimating the health impacts of air pollution from fossil fuel electricity generation. Energy Res Social Sci 6:74–77. https://doi.org/10.1016/j.erss.2014.12.002

Brumfiel G, Cyranoski D (2011) Quake sparks nuclear crisis. Nature News 471(7338):273–275. https://doi.org/10.1038/471273a

Burgherr P, Hirschberg S (2014) Comparative risk assessment of severe accidents in the energy sector. Energy Policy 74. https://doi.org/10.1016/j.enpol.2014.01.035

Burtraw D, Krupnick A (2012) The true cost of electric power. An inventory of methodologies to support future decision-making in comparing the cost and competitiveness of electricity generation technologies. Summary for Policy-Makers

Burtraw D, Krupnick AJ, Sampson G (2012) The true cost of electric power. An inventory of methodologies to support future decisionmaking in comparing the cost and competitiveness of electricity generation technologies (Tech. Rep.)

Callaway DS (2010) Sequential reliability forecasting for wind energy: temperature dependence and probability distributions. IEEE Transactions on Energy Conversion 25(2):577–585. https://doi.org/10.1109/TEC.2009.2039219

Carlsten C, Dybuncio A, Becker A, Chan-Yeung M, Brauer M (2011) Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occupational and Environmental Medicine 68(4):291–295. https://doi.org/10.1136/oem.2010.055152

Castelo Branco DA, Moura MCP, Szklo A, Schaeffer R (2013) Emissions reduction potential from CO2 capture: a life-cycle assessment of a Brazilian coal-fired power plant. Energy Policy 61:1221–1235. https://doi.org/10.1016/j.enpol.2013.06.043

Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H (2013) Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke 44(4):954–960. https://doi.org/10.1161/STROKEAHA.111.673442

Chiu Y-HM, Bellinger DC, Coull BA, Anderson S, Barber R, Wright RO, Wright RJ (2013) Associations between traffic-related black carbon exposure and attention in a prospective birth cohort of urban children. Environmental Health Perspectives 121(7):859–864. https://doi.org/10.1289/ehp.1205940

Corona B, Cerrajero E, López D, San Miguel G (2016) Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs. Solar Energy 135:758–768. Retrieved 2019-02-12, from http://www.sciencedirect.com/science/article/pii/S0038092X16302407. https://doi.org/10.1016/j.solener.2016.06.059

Crouse DL, Goldberg MS, Ross NA, Chen H, Labrèche F (2010) Postmenopausal breast cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: a case-control study. Environmental Health Perspectives 118(11):1578–1583. https://doi.org/10.1289/ehp.1002221

Dai K, Bergot A, Liang C, Xiang W-N, Huang Z (2015) Environmental issues associated with wind energy – a review. Renewable Energy 75 (C):911–921. Retrieved 2019-07-20, from https://ideas.repec.org/a/eee/renene/v75y2015icp911-921.html

Dallas CE, Lingenfelser SF, Lingenfelser JT, Holloman K, Jagoe CH, Kind JA, Smith MH (1998) Flow cytometric analysis of erythrocyte and leukocyte DNA in fish from Chernobyl-contaminated ponds in the Ukraine. Ecotoxicology 7(4):211–219. https://doi.org/10.1023/A:1008986727743

Damousis IG, Alexiadis MC, Theocharis JB, Dokopoulos PS (2004) A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Transactions on Energy Conversion 19(2):352–361. https://doi.org/10.1109/TEC.2003.821865

Dęsal K, Popławski T, Starczynowska E (2010) Badanie wpływu czynników pozapogodowych na zmiany obciężenia w krajowym systemie elektroenergetycznym. Rynek Energii 87:38–42

Delamater PL, Finley AO, Banerjee S (2012) An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California. The Science of the Total Environment 425:110–118. https://doi.org/10.1016/j.scitotenv.2012.02.015

DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a swiss hydropower reservoir: contribution from bubbling sediments. Environmental Science and Technology 44 (7):2419–2425

Demetriou CA, Raaschou-Nielsen O, Loft S, Møller P, Vermeulen R, Palli D, Vineis P (2012) Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med 69(9):619–627. https://doi.org/10.1136/oemed-2011-100566

Desholm M (2006) Wind farm related mortality among avian migrants - a remote sensing study and model analysis (Doctoral Dissertation). Retrieved from http://www.vliz.be/imisdocs/publications/127432.pdf

Desholm M (2009) Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms. Journal of Environmental Management 90(8):2672–2679. Retrieved from http://www.sciencedirect.com/science/article/pii/S030147970900053X. https://doi.org/10.1016/j.jenvman.2009.02.005

Dimitrijević Z, Tatić K, Knežević A, Salihbegović I (2011) External costs from coal-fired thermal plants and sulphur dioxide emission limit values for new plants in Bosnia and Herzegovina. Energy Policy 39(6):3036–3041. https://doi.org/10.1016/j.enpol.2011.03.068

Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329(24):1753–1759. https://doi.org/10.1056/NEJM199312093292401

Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295(10):1127–1134. https://doi.org/10.1001/jama.295.10.1127

Droes M, Koster H (2014) Renewable energy and negative externalities: the effect of wind turbines on house prices (WorkingPaper No. 14-124/VIII). Tinbergen Institute

Dutta RK, Agrawal MBHU (2002) Effect of tree plantations on the soil characteristics and microbial activity of coal mine spoil land. Tropical Ecology (India). Retrieved 2017-10-31, from http://agris.fao.org/agris-search/search.do?recordID=IN2005000574

Edrén SMC, Andersen SM, Teilmann J, Carstensen J, Harders PB, Dietz R, Miller LA (2010) The effect of a large danish offshore wind farm on harbor and gray seal haul-out behavior. Marine Mammal Science 26(3):614–634. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2009.00364.x. https://doi.org/10.1111/j.1748-7692.2009.00364.x

Ekka N, Behera N (2011) Species composition and diversity of vegetation developing on an age series of coal mine spoil in an open cast coal field in Orissa, India. Tropical Ecology 52:337–343

Empire State Electric Energy Research Corporation (1996) New York State environmental externalities cost study: 2 volumes. Oceana Publications

European Commission (2003) External costs research results on socio-environmental damages due to electricity and transport external cost (Tech. Rep.)

European union emission inventory report 1990-2016 (Tech. Rep.) (2018) European Environment Agency

Fan S, Liao JR, Yokoyama R, Chen L, Lee WJ (2009) Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Transactions on Energy Conversion 24(2):474–482. https://doi.org/10.1109/TEC.2008.2001457

Fend T, Schwarzbözl P, Smirnova O, Schöllgen D, Jakob C (2013) Numerical investigation of flow and heat transfer in a volumetric solar receiver. Renewable Energy 60:655–661. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960148113002942. https://doi.org/10.1016/j.renene.2013.06.001

Ferreira A, Kunh SS, Fagnani KC, De Souza TA, Tonezer C, Dos Santos GR, Coimbra- Araújo CH (2018) Economic overview of the use and production of photovoltaic solar energy in Brazil. Renewable and Sustainable Energy Reviews 81:181–191. Retrieved 2019-11-26, from http://www.sciencedirect.com/science/article/pii/S1364032117310389. https://doi.org/10.1016/j.rser.2017.06.102

Focken U, Lange M, Mönnich K, Waldl H-P, Beyer HG, Luig A (2002) Short-term prediction of the aggregated power output of wind farms–a statistical analysis of the reduction of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 90(3):231–246. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167610501002227. https://doi.org/10.1016/S0167-6105(01)00222-7

Friedrich R, Voss A (1993) External costs of electricity generation. Energy Policy 21(2):114–122. https://doi.org/10.1016/0301-4215(93)90133-Z

Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, Peters J (2004) The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine 351(11)):1057–1067. https://doi.org/10.1056/NEJMoa040610

Georgakellos DA (2010) Impact of a possible environmental externalities internalisation on energy prices: the case of the greenhouse gases from the Greek electricity sector. Energy Economics 32(1):202–209. https://doi.org/10.1016/j.eneco.2009.05.010

Geraskin SA, Dikarev VG, Zyablitskaya YY, Oudalova AA, Spirin YV, Alexakhin RM (2003) Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. Journal of Environmental Radioactivity 66(1-2):155–169. https://doi.org/10.1016/S0265-931X(02)00121-2

Gipe P (1995) Wind energy comes of age. Wiley, New York. Retrieved from https://books.google.pl/books?id=8itBNxBL4igC

Gong J, Darling SB, You F (2015) Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy & Environmental Science 8(7):1953–1968. Retrieved 2019-07- 31, from https://pubs.rsc.org/en/content/articlelanding/2015/ee/c5ee00615e. https://doi.org/10.1039/C5EE00615E

Gowers AM, Cullinan P, Ayres JG, Anderson HR, Strachan DP, Holgate ST, Maynard RL (2012) Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence a review. Respirology (Carlton, Vic.) 17(6):887–898. https://doi.org/10.1111/j.1440-1843.2012.02195.x

Guezuraga B, Zauner R, Pölz W (2012) Life cycle assessment of two different 2 MW class wind turbines. Renew Energy 37(1):37–44. https://doi.org/10.1016/j.renene.2011.05.008

Hafemeister D, Kammen D, Levi BG, Schwartz P (2011) Hidden costs of energy: unpriced consequences of energy production and use. AIP Conference Proceedings 1401(1):165–182. https://doi.org/10.1063/1.3653850

Hammar L, Perry D, Gullström M (2016) Offshore wind power for marine conservation. Open J Marine Sci 06:66–78. https://doi.org/10.4236/ojms.2016.61007

Hansen K (2019) Decision-making based on energy costs: comparing levelized cost of energy and energy system costs. Energy Strategy Reviews 24:68–82. Retrieved 2019-09-27, from http://www.sciencedirect.com/science/article/pii/S2211467X19300197. https://doi.org/10.1016/j.esr.2019.02.003

Hazarika P, Talukdar NC, Singh YP (2006) Natural colonization of plant species on coal mine spoils at Tikak Colliery, Assam. Tropical Ecology 47

HEI Panel on the Health Effects of Traffic-Related Air Pollution (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects (Tech. Rep.). Health Effects Institute

Hirth L (2015) Market value of solar power: is photovoltaics cost-competitive? IET Renewable Power Generation 9(1):37–45. https://doi.org/10.1049/iet-rpg.2014.0101

Ho CK (2016) Review of avian mortality studies at concentrating solar power plants. AIP Conference Proceedings 1734(1):070017. Retrieved from http://aip.scitation.org/doi/abs/10.1063/1.4949164. https://doi.org/10.1063/1.4949164

Hoeve JET, Jacobson MZ (2012) Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy & Environmental Science 5(9):8743–8757. https://doi.org/10.1039/C2EE22019A

Holtzer G, Holtzer M (2012) Ustawa o odnawialnych źródłach energii. Przeględ Odlewnictwa 62:446–451

IPCC (2014) Global warming potential of selected electricity sources (Tech. Rep.)

Jha AK, Singh JS (1991) Spoil characteristics and vegetation development of an age series of mine spoils in a dry tropical environment. Vegetatio 97(1):63–76. Retrieved 2017-10-31, from https://link.springer.com/article/10.1007/BF00033902. https://doi.org/10.1007/BF00033902

Kaczmarczyk M (2011) Wyspa pełna energii. geotermia na islandii. GLOBEnergia: Odnawialne Źródła Energii (2):40–43

Kim Y, Kim M, Kim W (2013) Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy 61:822–828. https://doi.org/10.1016/j.enpol.2013.06.107

Klaassen G, Riahi K (2007) Internalizing externalities of electricity generation: an analysis with MESSAGE-MACRO. Energy Policy 35(2):815–827. https://doi.org/10.1016/j.enpol.2006.03.007

Knutelski S (2010) Changes in the fauna in the vicinity of the complex of water reservoirs Czorsztynniedzica and Sromowce Wyzne recorded before and after the creation of the reservoirs and attempts to indicate the causes of this process. Pieniny – Zapora – Zmiany – Monografie Pienińskie 2:173–184

Knutelski S, Witkowski Z, Kieruzel K, Simon R (2010) Changes in the weevil fauna in the region of the Complex of Water Reservoirs Czorsztyn-Niedzica and Sromowce Wyzne over the period 1992–1997 (Coleoptera: Curculionoidea). Monografie Pienińskie 2:207–225

Krewitt W (2002) External costs of energy–do the answers match the questions? Energy Policy 30(10):839–848. https://doi.org/10.1016/S0301-4215(01)00140-9

Krewitt W, Heck T, Trukenmüller A, Friedrich R (1999) Environmental damage costs from fossil electricity generation in Germany and Europe. Energy Policy 27(3):173–183. https://doi.org/10.1016/S0301-4215(99)00008-7

Kudełko M (2012) Koszty zewnetrzne produkcji energii elektrycznej z projektowanych elektrowni dla kompleksów złożowych wegla brunatnego Legnica i Gubin oraz sektora energetycznego w Polsce (Tech. Rep.)

Kucowski J, Laudyn D, Przekwas M (1997) Energetyka a ochrona środowiska. WNT

Landberg L (1999) Short-term prediction of the power production from wind farms. Journal of Wind Engineering and Industrial Aerodynamics 80(1-2):207–220. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167610598001925. https://doi.org/10.1016/S0167-6105(98)00192-5

Lee R, Krupnik A, Burtraw D (1995) Estimating externalities of electric fuel cycles: analytical methods and issues and estimating externalities of coal fuel cycles (Tech. Rep.). McGraw-Hill/Utility Data Institute

Lei M, Shiyan L, Chuanwen J, Hongling L, Yan Z (2009) A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews 13(4):915–920. Retrieved from http://www.sciencedirect.com/science/article/pii/S1364032108000282. https://doi.org/10.1016/j.rser.2008.02.002

Leksell I, Rabl A (2001) Air pollution and mortality: quantification and valuation of years of life lost. Risk Analysis: An Official Publication of the Society for Risk Analysis 21(5):843–857

Li Y, Chen DW, Liu M, Wang RZ (2017) Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China. International Journal of Hydrogen Energy 42(4):1899–1911. https://doi.org/10.1016/j.ijhydene.2016.12.149

Lohse C (2018) Environmental impact by hydrogeothermal energy generation in low-enthalpy regions. Renewable Energy 128:509–519. Retrieved 2019-02-12, from http://www.sciencedirect.com/science/article/pii/S0960148117305347. https://doi.org/10.1016/j.renene.2017.06.030

Longo A, Markandya A, Petrucci M (2008) The internalization of externalities in the production of electricity: willingness to pay for the attributes of a policy for renewable energy. Ecol Econ 67(1):140–152. https://doi.org/10.1016/j.ecolecon.2007.12.006

Loss SR, Will T, Marra PP (2013) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation 168:201–209. Retrieved from. https://doi.org/10.1016/j.biocon.2013.10.007

Maar M, Bolding K, Petersen JK, Hansen JL, Timmermann K (2009) Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. J Sea Res 62(2):159–174. Retrieved from http://www.sciencedirect.com/science/article/pii/S1385110109000203 (Metabolic organization: 30 years of DEB applications and developments). https://doi.org/10.1016/j.seares.2009.01.008

Máca V, Melichar J, Ščasný M (2012) Internalization of external costs of energy generation in central and Eastern European countries. The Journal of Environment & Development 21(2):181–197. https://doi.org/10.1177/1070496512442504

Maddox B, Scaife P, Wibberley L, Australia CRCFCISD (2004) Externalities: A complementary tool for impact assessment. QCAT Technology Transfer Centre, Technical note

Mahapatra D, Shukla P, Dhar S (2012) External cost of coal based electricity generation: a tale of Ahmedabad City. Energy Policy 49:253–265. https://doi.org/10.1016/j.enpol.2012.06.014

Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity 102(8):796–797. https://doi.org/10.1016/j.jenvrad.2011.04.010

Marples DR (1996) The decade of despair. Bulletin of the Atomic Scientists 52(3):20–31. Retrieved from https://doi.org/10.1080/00963402.1996.11456623

Mikolajczak J, Borowski S, Marć-Pieńkowska J, Odrowaz-Sypniewska G, Bernacki Z, Siódmiak J, Szterk P (2013) Preliminary studies on the reaction of growing geese (Anser anser f. domestica) to the proximity of wind turbines. Polish Journal of Veterinary Sciences 16(4):679–86. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24597302%5Cn, http://www.degruyter.com/view/j/pjvs.2013.16.issue-4/pjvs-2013-0096/pjvs-2013-0096.xml. https://doi.org/10.2478/pjvs-2013-0096

Mirasgedis S, Diakoulaki D, Papagiannakis L, Zervos A (2000) Impact of social costing on the competitiveness of renewable energies: the case of crete. Energy Policy 28(1):65–73. https://doi.org/10.1016/S0301-4215(99)00082-8

Mondal MAH, Rosegrant M, Ringler C, Pradesha A, Valmonte-Santos R (2018) The Philippines energy future and low-carbon development strategies. Energy 147(C):142–154. Retrieved 2019-07-19, from https://ideas.repec.org/a/eee/energy/v147y2018icp142-154.html

Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, Jouven X (2012) Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 307(7)):713–721. https://doi.org/10.1001/jama.2012.126

Myllyvirta L, Jerabek J, Łoś I, Pazderski L (2013) Wegiel zabija. analiza kosztów zdrowotnych emisji zanieczyszczen z polskiego sektora energetycznego (Tech. Rep.). Fundacja Greenpeace Polska

Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman KG (2007) The ripple effect: biofuels, food security, and the environment. Environment: Science and Policy for Sustainable Development 49(9):30–43. Retrieved from https://doi.org/10.3200/ENVT.49.9.30-43. https://doi.org/10.3200/ENVT.49.9.30-43

Newman NC, Ryan P, LeMasters G, Levin L, Bernstein D, Herschey GKK, Dietrich KN (2013) Traffic-related air pollution exposure in the first year of life and behavioral scores at 7 years of age 121 (6)

Nieuwenhuizen E, Köhl M (2015) Differences in noise regulations for wind turbines in four European countries. EuroNoise: 333–338

Nkambule NP, Blignaut JN (2012) The external costs of coal mining: the case of collieries supplying Kusile power station. Journal of Energy in Southern Africa 23(4):85–93

Nowacki J (2010) Changes in the noctuid fauna (Lepidoptera, Noctuidae) of xerothermic rock ecosystems in the Pieniny Mts. with special emphasis on the impact of the water reservoirs: Czorsztyński and Sromowiecki. Monografie Pienińskie, 195–205

Nowacki J, Węsala R (2008) The Noctuids (Lepidoptera, Noctuidae) of xerothermic rock swards in the Pieniny Mts. Polish Entomological Monographs 4:3–60

Nuclear Energy Agency (2019) The full costs of electricity provision (no. 7298)

Osán J, Havránek M, Balajka J (2009) Paper n ∘ 5.2 - RS 1d assessment of externalities of nuclear fuel cycle in Central-East-European countries (Tech. Rep.). NEEDS - New Energy Externalities Developments for Sustainability

Pambudi NA (2018) Geothermal power generation in Indonesia, a country within the ring of fire: current status, future development and policy. Renewable and Sustainable Energy Reviews 81:2893–2901. Retrieved 2019-07-19, from http://www.sciencedirect.com/science/article/pii/S1364032117310353. https://doi.org/10.1016/j.rser.2017.06.096

PC PORTPCP (2012) Program likwidacji emisji pyłów zawieszonych w powietrzu Krakowa. GlobEnergia. Retrieved 2017-08-12, from http://globenergia.pl/program-likwidacji-emisji-pylow-zawieszonych-w-powietrzu-krakowa/

Pearce D (1994) Costing the environmental damage from energy production

Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, Rauh V (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124(2):e195–e202. https://doi.org/10.1542/peds.2008-3506

Perera FP, Wang S, Rauh V, Zhou H, Stigter L, Camann D, Jedrychowski W, Mroz E, Majewska R (2013) Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics, peds.2012–3844. https://doi.org/10.1542/peds.2012-3844

Pérez de Arce M, Sauma E, Contreras J (2016) Renewable energy policy performance in reducing CO2 emissions. Energy Economics 54:272–280. https://doi.org/10.1016/j.eneco.2015.11.024

Petersen I, Mackenzie M, Rexstad E, Wisz M, Fox A (2011) Comparing pre- and postconstruction distributions of long-tailed ducks clangula hyemalis in and around the Nysted offshore wind farm, Denmark: a quasi-designed experiment accounting for imperfect detection, local surface features and autocorrelation

Platform ZEFFPPT (2006) A vision for zero emission fossil fuel power plants. (Tech. Rep.). EUR 22043

Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science (New York, N.Y.) 352(6283):aad4424. https://doi.org/10.1126/science.aad4424

Pomerantseva MD, Ramaiya LK, Chekhovich AV (1997) Genetic disorders in house mouse germ cells after the Chernobyl catastrophe. Mutation Research 381(1):97–103

Qian Y, Zhu M, Cai B, Yang Q, Kan H, Song G, Wang C (2013) Epidemiological evidence on association between ambient air pollution and stroke mortality. Journal of Epidemiology and Community Health 67(8):635–640. https://doi.org/10.1136/jech-2012-201096

Rabl A, Spadaro J (2005) Externalities of energy: extension of accounting framework and policy applications. Final Technical Report (Tech. Rep.). Paris

Rabl A, Spadaro JV (2016) External costs of energy: how much is clean energy worth? Journal of Solar Energy Engineering 138(4):040801–040801–8. Retrieved 2019-07-31, from https://doi.org/10.1115/1.4033596. https://doi.org/10.1115/1.4033596

Radović U (2002) Assessment of external costs of power generation in Poland, Part of the IAEA’s Co-ordinated Research Project in estimating the external costs associated with electricity generating options in developing countries using simplified methodologies (Tech. Rep.). Warsaw

Rafaj P, Kypreos S (2007) Internalisation of external cost in the power generation sector: analysis with global multi-regional MARKAL model. Energy Policy 35(2):828–843. https://doi.org/10.1016/j.enpol.2006.03.003

Ragnarsson A (2015) Geothermal development in Iceland 2010-2014. Proceedings World Geothermal Congress 4(9)

Reardon S (2011) Fukushima radiation creates unique test of marine life’s hardiness. Science 332(6027):292–292. https://doi.org/10.1126/science.332.6027.292

Rečka L, Ščasný M (2017) Impacts of reclassified brown coal reserves on the energy system and deep decarbonisation target in the Czech Republic. Energies 10(12):1947. Retrieved 2019-02-12, from https://www.mdpi.com/1996-1073/10/12/1947. https://doi.org/10.3390/en10121947

Rentizelas A, Georgakellos D (2014) Incorporating life cycle external cost in optimization of the electricity generation mix. Energy Policy 65:134–149. https://doi.org/10.1016/j.enpol.2013.10.023

Roberts AL, Lyall K, Hart JE, Laden F, Just AC, Bobb JF, Weisskopf MG (2013) Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environmental Health Perspectives 121(8):978–984. https://doi.org/10.1289/ehp.1206187

Robertson J, Hendry MJ, Kotzer T, Hughes KA (2019) Geochemistry of uranium mill tailings in the Athabasca Basin, Saskatchewan, Canada: a review. Critical Reviews in Environmental Science and Technology 49 (14):1237–1293. Retrieved 2019-07-26, from https://doi.org/10.1080/10643389.2019.1571352

Roque CV, Nascimento MRL, Ronqui LB, Campos MB, Ferrari CR, Rodgher S, Oliveira MJDD (2009) Effects of uranium mine effluents (Caldas, Southeastern Brazil) on the aquatic biota: preliminary study on the phytoplankton community. Proceedings of the International Nuclear Atlantic Conference INAC 2009. Retrieved 2019-07-26, from http://inis.iaea.org/Search/search.aspx?origq=RN:40106358

Roth IF, Ambs LL (2004) Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy 29(12):2125–2144. https://doi.org/10.1016/j.energy.2004.03.016

Royal Society for the Protection of Birds (2017) Positions: wind farms

SBJR, Zukowski R (1965) Butterfly fauna of Pieniny. Acta Zoologica Cracoviensis 10:375–493

Samadi S (2017) The social costs of electricity generation–categorising different types of costs and evaluating their respective relevance. Energies 10(3):356. Retrieved 2019-02-12, from https://www.mdpi.com/1996-1073/10/3/356. https://doi.org/10.3390/en10030356

Savvilotidou V, Antoniou A, Gidarakos E (2017) Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management 59:394–402. Retrieved 2019-07-31, from http://www.sciencedirect.com/science/article/pii/S0956053X16305578

Scheidat M, Tougaard J, Brasseur S, Carstensen J, van Polanen Petel T, Teilmann J, Reijnders P (2011) Harbour porpoises (phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environmental Res Lett 6(2):025102. Retrieved from https://doi.org/10.1088%2F1748-9326%2F6%2F2%2F025102. https://doi.org/10.1088/1748-9326/6/2/025102

Schwarzbözl P, Buck R, Sugarmen C, Ring A, Marcos Crespo MJ, Altwegg P, Enrile J (2006) Solar gas turbine systems: design, cost and perspectives. Solar Energy 80(10):1231–1240. Retrieved 2017-10-31, from http://www.sciencedirect.com/science/article/pii/S0038092X05003348. https://doi.org/10.1016/j.solener.2005.09.007

Sesto E, Casale C (1998) Exploitation of wind as an energy source to meet the world’s electricity demand. Journal of Wind Engineering and Industrial Aerodynamics 74-76:375–387. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167610598000348. https://doi.org/10.1016/S0167-6105(98)00034-8

Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Mills NL (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. The Lancet 382(9897):1039–1048. https://doi.org/10.1016/S0140-6736(13)60898-3

Shortall R, Kharrazi A (2017) Cultural factors of sustainable energy development: a case study of geothermal energy in Iceland and Japan. Renewable and Sustainable Energy Reviews 79:101–109. Retrieved 2019-07-19, from http://www.sciencedirect.com/science/article/pii/S1364032117306652. https://doi.org/10.1016/j.rser.2017.05.029

Smith KR, Frumkin H, Balakrishnan K, Butler CD, Chafe ZA, Fairlie I, Schneider M (2013) Energy and human health. Annual Review of Public Health 34:159–188. https://doi.org/10.1146/annurev-publhealth-031912-114404

Sneed D (2013) Diablo Canyon faces state deadlines to change its cooling system. The Tribune. Retrieved 2017-08-12, from http://www.sanluisobispo.com/news/local/environment/article39459930.html

Snyder B, Kaiser MJ (2009) Ecological and economic cost-benefit analysis of offshore wind energy. Renewable Energy 34 (6):1567–1578. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960148108004217. https://doi.org/10.1016/j.renene.2008.11.015

Söderholm P, Sundqvist T (2003) Pricing environmental externalities in the power sector: ethical limits and implications for social choice. Ecol Econ 46(3):333–350. https://doi.org/10.1016/S0921-8009(03)00185-X

Solomon E, Martin C, Martin DW, Berg LR (2014) Biology, 10th edn. Brooks Cole, Australia

Spalding-Fecher R, Matibe DK (2003) Electricity and externalities in South Africa. Energy Policy 31 (8):721–734. https://doi.org/10.1016/S0301-4215(02)00123-4

Stammer L, Harris S (1990) Blasts rip desert solar power plant - latimes. Los Angeles Times. Retrieved 2017-08-12, from http://articles.latimes.com/1990-01-11/news/mn-202_1_solar-power-plant

Stefanowicz AM, Kapusta P, Błońska A, Kompała-Bęba A, Woźniak G (2015) Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecological Engineering 83(Supplement C):328–337. Retrieved 2017-10-31, from http://www.sciencedirect.com/science/article/pii/S0925857415301002. https://doi.org/10.1016/j.ecoleng.2015.06.034

Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of The Total Environment 470:800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029

Sternberg R (2008) Hydropower: dimensions of social and environmental coexistence. Renewable and Sustainable Energy Reviews 12(6):1588–1621. Retrieved 2019-01-24, from https://linkinghub.elsevier.com/retrieve/pii/S1364032107000408. https://doi.org/10.1016/j.rser.2007.01.027

Streimikiene D, Alisauskaite-Seskiene I (2014) External costs of electricity generation options in Lithuania. Renewable Energy 64:215–224. https://doi.org/10.1016/j.renene.2013.11.012

Stulberg AN (2015) Out of gas?: Russia, Ukraine, Europe, and the changing geopolitics of natural gas. Problems of Post-Communism 62(2):112–130. Retrieved from https://doi.org/10.1080/10758216.2015.1010914

Sundqvist T, Soederholm P (2002) Valuing the environmental impacts of electricity generation: a critical survey [Monograph]. http://pure.iiasa.ac.at/6784/,

Szymański B (2011) Kogeneracja w energetyce słonecznej (in Polish). GLOBEnergia: Odnawialne Źródła Energii (2): 30–31

Taylor JW, McSharry PE, Buizza R (2009) Wind power density forecasting using ensemble predictions and time series models. IEEE Transactions on Energy Conversion 24(3):775–782. https://doi.org/10.1109/TEC.2009.2025431

Tegen S (2015) Wind power siting: public acceptance and land use (Tech. Rep.). National Renewable Energy Laboratory

Teilmann J, Carstensen J (2012) Negative long term effects on harbour porpoises from a large scale offshore wind farm in the baltic–evidence of slow recovery. Environmental Res Lett 7(4):045101. Retrieved from. https://doi.org/10.1088/1748-9326/7/4/045101

Teilmann J, Carstensen J, Dietz R, Edren S, Andersen S (2006) Final report on aerial monitoring of seals near Nysted Offshore Wind Farm. Technical report to energi e2 a/s. National Environmental Research Institute

Trasande L, Thurston GD (2005) The role of air pollution in asthma and other pediatric morbidities. The Journal of Allergy and Clinical Immunology 115(4):689–699. https://doi.org/10.1016/j.jaci.2005.01.056

Trojanowska A, Kurasiewicz M, Plesniak L, Jedrysek MO (2009) Emission of methane from sediments of selected Polish dam reservoirs. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 6:368–373

Tytko R (2009) Odnawialne źródła energii (in polish). OWG

van Zelm R, Preiss P, van Goethem T, Van Dingenen R, Huijbregts M (2016) Regionalized life cycle impact assessment of air pollution on the global scale: damage to human health and vegetation. Atmospheric Environment 134:129–137. https://doi.org/10.1016/j.atmosenv.2016.03.044

van den Bergh J, Botzen W (2015) Monetary valuation of the social cost of CO2 emissions: a critical survey. Ecol Econom 114 (C):33–46. Retrieved from https://ideas.repec.org/a/eee/ecolec/v114y2015icp33-46.html. https://doi.org/10.1016/j.ecolecon.2015.0

Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R (2011) Residential proximity to freeways and autism in the CHARGE study. Environmental Health Perspectives 119(6):873–877. https://doi.org/10.1289/ehp.1002835

Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R (2013) Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 70(1):71–77. https://doi.org/10.1001/jamapsychiatry.2013.266

Vrijheid M, Martinez D, Manzanares S, Dadvand P, Schembari A, Rankin J, Nieuwenhuijsen M (2011) Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environmental Health Perspectives 119(5):598–606. https://doi.org/10.1289/ehp.1002946

Walston LJ, Rollins KE, Lagory KE, Smith KP, Meyers SA (2016) A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renewable Energy 92:405–414. Retrieved 2017-10-31, from http://www.sciencedirect.com/science/article/pii/S096014811630. https://doi.org/10.1016/j.renene.2016.02.041

Wang L, Watanabe T, Xu Z (2015) Monetization of external costs using lifecycle analysis—a comparative case study of coal-fired and biomass power plants in Northeast China. Energies 8(2):1–28

Watkiss P (2005) AEAT/ED51014/Baseline Scenarios CAFE CBA: Baseline Analysis 2000 to 2020 (Tech. Rep.). AEA Technology Environment

Watson SJ, Xiang BJ, Yang W, Tavner PJ, Crabtree CJ (2010) Condition monitoring of the power output of wind turbine generators using wavelets. IEEE Transactions on Energy Conversion 25(3):715–721. https://doi.org/10.1109/TEC.2010.2040083

WCED Bruntland Commission (1987) Our common future (Tech. Rep.). Oxford University Press

Wei Y, Davis J, Bina WF (2012) Ambient air pollution is associated with the increased incidence of breast cancer in US. Int J Environmental Health Res 22(1):12–21. https://doi.org/10.1080/09603123.2011.588321

Wellenius GA, Schwartz J, Mittleman MA (2005) Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 36(12):2549–2553. https://doi.org/10.1161/01.STR.0000189687.78760.47

Witkowski Z (2003) Fauna Pieninskiego Parku Narodowego, jej zagrozenie i ochrona. Pieniny Przyroda i Człowiek 8:71–82

Woźniak G (2010) Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland). Instytut Botaniki im. W. Szafera. PAN. Dział Wydawnictw

Woźniak G, Markowicz A, Borymski S, Piotrowska-Seget Z, Chmura D, Besenyei L (2015) The relationship between successional vascular plant assemblages and associated microbial communities on coal mine spoil heaps. Community Ecology 16(1):23–32. Retrieved 2017-10-31, from http://akademiai.com/doi/abs/10.1556/168.2015.16.1.3. https://doi.org/10.1556/168.2015.16.1.3

Zapałowicz Z (2010) Stopień wykorzystania energii elektrycznej wytwarzanej przez instalacje fotowoltaiczne. Rynek Energii 91(6):77–82

Zhen Z, Tian L, Ye Q (2018) A simple estimate for the social cost of carbon. Energy Procedia 152:768–773. Retrieved from http://www.sciencedirect.com/science/article/pii/S1876610218307884 (Cleaner Energy for Cleaner Cities). https://doi.org/10.1016/j.egypro.2018.09.243

Żukowski R (1957) O zmianach w faunie motyli Pienin zachodnich w następstwie ewentualnej budowy zbiornika wodnego na Dunajcu pod Czorsztynem. Polskie Pismo Entomologiczne, Ser. B 36:3–19


Watch the video: Upper Silesian Plebiscite, 20 March 1921 Poland v Germany (February 2023).